Algèbre commutative, Méthodes constructives. Modules projectifs de type fini, Cours et exercices
Lombardi Henri ; Quitté Claude
CALVAGE MOUNET
69,90 €
Sur commande
EAN :9782916352213
Fruit d'une collaboration de plus de dix ans entre deux spécialistes confirmés du domaine, ce grand traité d'algèbre commutative est sans équivalent dans la littérature mathématique. Ses auteurs, Henri Lombardi et Claude Quitté, y adoptent résolument le point de vue constructif, aujourd'hui prégnant en mathématiques. Ils privilégient les résultats explicites, si bien que tous les théorèmes proposés ont un contenu algorithmique. Plusieurs théories classiques "abstraites" sont ainsi revisitées, avec un éclairage nouveau qui en facilite l'accès. C'est le cas par exemple de la théorie de Galois, des anneaux de Dedekind, des modules projectifs de type fini ou de la théorie de la dimension de Krull, qui dans leur cadre classique ne laissent pas entrevoir un contenu algorithmique. Avec un millier de pages écrites dans un style alerte et précis et un peu plus de 320 exercices et problèmes, le plus souvent accompagnés de solutions, cet ouvrage monumental fera date et deviendra rapidement une référence incontournable. Sa publication chez les éditions Calvage & Mounet constitue un véritable événement éditorial et souligne le rôle de plus en plus reconnu de l'aspect effectif dans le développement des mathématiques contemporaines. L'ouvrage s'adresse en priorité aux étudiants et enseignants en M1 et M2. II intéressera également les informaticiens théoriciens et les spécialistes en calcul formel. Enfin, les agrégatifs curieux y trouveront un nombre considérable d'idées nouvelles pour leurs leçons d'oral.
Commandé avant 16h, livré demain
Nombre de pages
991
Date de parution
01/12/2011
Poids
1 380g
Largeur
157mm
Plus d'informations
Plus d'informations
EAN
9782916352213
Titre
Algèbre commutative, Méthodes constructives. Modules projectifs de type fini, Cours et exercices
Auteur
Lombardi Henri ; Quitté Claude
Editeur
CALVAGE MOUNET
Largeur
157
Poids
1380
Date de parution
20111201
Nombre de pages
991,00 €
Pourquoi choisir Molière ?
Efficacité et rapiditéCommandé avant 16hlivré demain
Économique et pratiqueLivraison à domiciledès 5,10 €
L'épistémologie est la philosophie des sciences. L'épistémologie mathématique a pour but de réfléchir à ce que l'on fait vraiment quand on fait des mathématiques, et d'analyser le rapport entre cette pratique et la pratique des autres sciences. Les mathématiques ont une histoire, et leur histoire est toujours en cours. Aussi cet ouvrage se propose d'éclairer par l'histoire les questions soulevées. Ce cours propose une première étude de quelques questions essentielles. Qu'est-ce qu'un objet mathématique: un nombre entier, un nombre réel, une fonction réelle, un espace vectoriel, un espace de fonctions, un objet de nature géométrique? Qu'est-ce qu'un énoncé concernant un objet mathématique? Quelles méthodes de raisonnement sont-elles vraiment légitimes? Quelle est la nature de l'infini mathématique? Qu'est-ce que la méthode formaliste en mathématiques? Quelles limites le théorème d'incomplétude de Gödel impose-t-il au formalisme? Ces questions sont abordées sous divers angles: des cours proprement dits; des analyses de preuve; des commentaires de textes historiques. Cet ouvrage s'adresse aux étudiants en sciences en fin de licence, et aux enseignants de sciences en lycée ou à l'université. Il ne réclame pas de connaissances mathématiques sophistiquées et propose plutôt de réfléchir sur les activités mathématiques de base, en prenant un peu de recul par rapport à la vérité révélée telle qu'elle est usuellement enseignée.
Cet ouvrage est un cours d'introduction à l'algèbre commutative de base. Il est écrit selon le point de vue constructif. Tous les résultats ont un contenu calculatoire clair. Un regard nouveau et souvent simplificateur est porté sur plusieurs théories classiques, en particulier sur certaines qui n'ont pas de contenu algorithmique dans leur cadre naturel le plus général, comme la théorie de Galois, celle des modules projectifs de type fini, celle des anneaux de Dedekind ou celle de la dimension de Krull. Cours et Exercices 322 exercices et 50 problèmes, la plupart corrigés
Diaz-Toca Gema-Maria ; Lombardi Henri ; Quitté Cla
Réservée autrefois aux spécialistes, la théorie des modules a fini par convaincre les plus hésitants par son efficacité et, au fond, par sa simplicité. Raisonner en termes de modules c'est donner aux éléments de l'anneau un premier souffle de vie, un peu comme on fait avec les éléments d'un groupe quand on le fait agir. Mais, au delà de cet acte averti, cette théorie s'est imposée par la portée unifiante de ses méthodes et de ses résultats. Le présent livre est un cours d'algèbre pour le Master 1, consacré précisément à la théorie des modules sur les anneaux commutatifs. La première partie traite le cas des modules de présentation finie sur les anneaux principaux. Avec de belles applications à la solution des systèmes linéaires à coefficients entiers et à la structure des endomorphismes des espaces vectoriels de dimension finie, cette première partie s'avérera un outil précieux pour la préparation à l'agrégation. La deuxième partie approfondit les notions développées dans la première, en traitant notamment les modules de présentation finie sur les anneaux d'entiers de corps de nombres, et, plus généralement, sur les anneaux de dimension 0 ou 1. L'algèbre dans la tradition d'al-Khwarismi, Viète, Gauss, Galois, Bezout, Kummer et Kronecker est une science de nature algorithmique. Dans ce traité d'algèbre moderne, les auteurs se situent dans cette tradition et adoptent le point de vue constructif, pour lequel tous les théorèmes d'existence ont un contenu algorithmique explicite. En particulier, lorsqu'un théorème affirme l'existence d'un objet, solution du problème donné en hypothèse, un algorithme de construction de l'objet peut toujours être extrait de la démonstration qui en est donnée. En ce sens, cet ouvrage est entièrement original, sans équivalent dans la littérature contemporaine. Les cent quatre-vingt-sept exercices, tous corrigés, permettront aux lecteurs de se convaincre de l'efficacité du point de vue constructif, tout en apportant parfois de précieux compléments au cours proprement dit. L'ouvrage ne réclame comme prérequis que les notions de base concernant la théorie des groupes, l'algèbre linéaire sur les corps et la théorie des déterminants.
Résumé : Une collection d'exercices et de problèmes d'analyse et de probabilités particulièrement adaptée aux élèves préparant les concours des Grandes écoles d'ingénieurs, telles que Centrale, les Mines ou l'Ecole Polytechnique. Un ouvrage se révélera très vite comme un des meilleurs outils pour réussir les concours. Chaque chapitre est précédé de rappels de cours nécessaires pour avoir une vue de haut sur les théorèmes importants correspondants.
Cet ouvrage présente, pour les étudiants de premier cycle, une introduction élémentaire mais rigoureuse aux graphes aléatoires, sujet d'ordinaire présenté en master : le contenu du cours, l'organisation en courts chapitres et les exercices, tous corrigés en détail, permettent de donner un vaste aperçu du domaine et d'aborder des résultats frappant par leur beauté mathématique ou leurs aspects parfois contre-intuitifs. La progression en quatre parties globalement indépendantes autorise une lecture partielle pour un projet de fin de semestre ou un travail personnel (comme les TIPE des classes préparatoires). Le parti-pris assumé de l'accessibilité rend le texte unique dans le domaine.
Un livre de plus de 1100 pages pour couvrir toute l'algèbre de licence et de Master I. Les chapitres classiques sur les groupes, anneaux et corps sont abordés de façon exhaustive et originale. Une place importante est consacrée à l'algèbre linéaire, aux matrices à coefficients dans un anneau et à l'arithmétique de base. Le dernier quart du livre concerne l'étude de la théorie de Galois et des représentations linéaires des groupes finis. De très nombreux exercices. Un livre appelé à concurrencer les ouvrages classiques d'algèbre fondamentale, publiés en France et à l'étranger.
Cet ouvrage est un cours d'introduction à l'algèbre commutative de base. Il est écrit selon le point de vue constructif. Tous les résultats ont un contenu calculatoire clair. Un regard nouveau et souvent simplificateur est porté sur plusieurs théories classiques, en particulier sur certaines qui n'ont pas de contenu algorithmique dans leur cadre naturel le plus général, comme la théorie de Galois, celle des modules projectifs de type fini, celle des anneaux de Dedekind ou celle de la dimension de Krull. Cours et Exercices 322 exercices et 50 problèmes, la plupart corrigés