Discours et démonstrations mathématiques concernant deux nouvelles sciences" de Galilée est l'un des cinq ouvrages majeurs de la pensée scientifique selon Hawking. Contenant entre autres la première formulation du principe de relativité restreinte et du principe d'équivalence à la base de la relativité générale, ce livre a fortement inspiré Descartes, Newton et Einstein. L'ouvrage n'est pas seulement un livre de physique puisqu'au-delà des considérations sur la science des matériaux et la mécanique (les deux nouvelles sciences), Galilée discute également de mathématiques, de l'infini, d'acoustique musicale et d'harmonie. Lire Galilée aujourd'hui n'est pas facile, en particulier parce que ses démonstrations sont basées sur des connaissances géométriques loin de notre façon de penser. Cette édition traduit son discours dans un langage accessible aux lecteurs modernes dès le lycée en préservant l'esprit original de l'auteur. Elle présente également une version restaurée des figures originales de Galilée qui excellait aussi dans l'art de la peinture.
Partant du principe qu'un domaine, même complexe, est assimilable s'il est présenté de manière adaptée et accessible, cette méthode progressive et visuelle permet de s'affranchir peu à peu des bases pour aborder des concepts avancés. Des illustrations et des schémas viennent en appui des textes et les notions importantes sont regroupées dans des récapitulatifs didactiques. Cet ouvrage nous plonge au coeur de l'une des plus importantes branches des mathématiques : l'algèbre. Un vaste domaine qui est le point de départ de toute exploration des mathématiques. Sont notamment abordés : les différents types de nombres, les algorithmes et les fonctions, les graphiques et la visualisation de données, la modélisation mathématique, les systèmes dynamiques, les mathématiques discrètes et les structures abstraites...
Résumé : Partant du principe qu'un domaine, même complexe, est assimilable s'il est présenté de manière adaptée et accessible, ce guide permet de s'affranchir peu à peu des bases pour aborder des concepts avancés. Des illustrations et des schémas viennent en appui des textes et les notions importantes sont regroupées dans des récapitulatifs didactiques. Ce livre est une visite au coeur de la géométrie ? l'étude mathématique de la forme et de l'espace. Assimiler les concepts clés et le vocabulaire est essentiel pour en découvrir toutes les facettes, du théorème de Pythagore aux fractales et à la théorie des noeuds. Sont abordés : les notions de base, les figures 2D et 3D et leur construction, les problèmes de pavage et d'empilement, les systèmes de coordonnées, les transformations, la géométrie non euclidienne, la topologie. Et aussi : des exemples de démonstrations géométriques, de célèbres théorèmes, la théorie des graphes et l'application de la géométrie dans la vie quotidienne.
Il faut apprendre à observer le monde là où on ne l'attend pas. Vous voyez le train d'à côté avancer ? Mais c'est le vôtre qui recule ! La nature est pleine d'illusions, elle brouille les pistes, laisse voir l'inverse de ce qui est. Alors comment démêler tout ça ? De la poussée d'Archimède à la physique quantique en passant par la théorie des embouteillages, la cuisson des coquillettes ou les bulles de champagne, il nous faudra oublier les évidences pour embrasser d'inconfortables incertitudes. Parfois, il suffit de regarder les choses différemment pour mieux les comprendre. Embarquez avec la chauve-souris, et vous verrez que tout s'explique !
Vous souvenez-vous du théorème de Pythagore et des équations du second degré ? Si des années se sont écoulées depuis votre dernier cours de maths, ces expressions peuvent vous sembler venir d'un autre monde. Drôle et éducatif, ce cahier comprend plus de 100 gribouillages abordant les notions de base des mathématiques. Ainsi, vous pourrez exprimer votre créativité tout en révisant les nombres premiers, les fonctions, les équations et bien d'autres choses encore... Et si vous séchez sur une équation, il vous suffit de consulter les " corrigés " !